Diameter-dependent multiferroic functionality in hybrid core/shell NWs†
Abstract
A versatile approach towards nanofabrication of highly reproducible Co/BiCoO3 (Co/BCO) core/shell (CS) nanowires (NWs) with different diameters has been adopted by demonstrating easily available and low cost sol–gel and electrodeposition routes. X-ray diffraction (XRD) analysis confirmed the tetragonal system of the BCO nanoshells (NSs) with the space group P4mm. Scanning electron microscopy (SEM) clearly demonstrates the uniform morphology with well aligned CS NWs. The magnetization reversal processes (MRPs), experimentally and with analytical modelling, have been discussed for CS NWs with θ ranging from 0° (in-plane magnetic easy axis) to 90° (out-of-plane magnetic hard axis) with magnetic hysteresis loops and geometrical parameters. Crossover from the vortex to transverse reversal mode on increasing θ has been observed for all diameters. An exchange bias effect has been observed for smaller CS NWs diameters and it is attributed to the shell thickness of ∼25 nm. Furthermore, the magnetic anisotropy effect has been discussed in some detail.