Issue 36, 2016

Controlling the rectification properties of molecular junctions through molecule–electrode coupling

Abstract

The development of molecular components functioning as switches, rectifiers or amplifiers is a great challenge in molecular electronics. A desirable property of such components is functional robustness, meaning that the intrinsic functionality of components must be preserved regardless of the strategy used to integrate them into the final assemblies. Here, this issue is investigated for molecular diodes based on N-phenylbenzamide (NPBA) backbones. The transport properties of molecular junctions derived from NPBA are characterized while varying the nature of the functional groups interfacing the backbone and the gold electrodes required for break-junction measurements. Combining experimental and theoretical methods, it is shown that at low bias (<0.85 V) transport is determined by the same frontier molecular orbital originating from the NPBA core, regardless of the anchoring group employed. The magnitude of rectification, however, is strongly dependent on the strength of the electronic coupling at the gold–NPBA interface and on the spatial distribution of the local density of states of the dominant transport channel of the molecular junction.

Graphical abstract: Controlling the rectification properties of molecular junctions through molecule–electrode coupling

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2016
Accepted
16 Aug 2016
First published
17 Aug 2016
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2016,8, 16357-16362

Controlling the rectification properties of molecular junctions through molecule–electrode coupling

M. Koepf, C. Koenigsmann, W. Ding, A. Batra, C. F. A. Negre, L. Venkataraman, G. W. Brudvig, V. S. Batista, C. A. Schmuttenmaer and R. H. Crabtree, Nanoscale, 2016, 8, 16357 DOI: 10.1039/C6NR04830G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements