Issue 4, 2016

N-Succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]SFBTMGMB): a residualizing label for 18F-labeling of internalizing biomolecules

Abstract

Residualizing labeling methods for internalizing peptides and proteins are designed to trap the radionuclide inside the cell after intracellular degradation of the biomolecule. The goal of this work was to develop a residualizing label for the 18F-labeling of internalizing biomolecules based on a template used successfully for radioiodination. N-Succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(bis-Boc-guanidinomethyl)benzoate ([18F]SFBTMGMB-Boc2) was synthesized by a click reaction of an azide precursor and [18F]fluorohexyne in 8.5 ± 2.8% average decay-corrected radiochemical yield (n = 15). An anti-HER2 nanobody 5F7 was labeled with 18F using [18F]SFBTMGMB ([18F]RL-I), obtained by the deprotection of [18F]SFBTMGMB-Boc2, in 31.2 ± 6.7% (n = 5) conjugation efficiency. The labeled nanobody had a radiochemical purity of >95%, bound to HER2-expressing BT474M1 breast cancer cells with an affinity of 4.7 ± 0.9 nM, and had an immunoreactive fraction of 62–80%. In summary, a novel residualizing prosthetic agent for labeling biomolecules with 18F has been developed. An anti-HER2 nanobody was labeled using this prosthetic group with retention of affinity and immunoreactivity to HER2.

Graphical abstract: N-Succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]SFBTMGMB): a residualizing label for 18F-labeling of internalizing biomolecules

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2015
Accepted
26 Nov 2015
First published
01 Dec 2015

Org. Biomol. Chem., 2016,14, 1261-1271

Author version available

N-Succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]SFBTMGMB): a residualizing label for 18F-labeling of internalizing biomolecules

G. Vaidyanathan, D. McDougald, J. Choi, M. Pruszynski, E. Koumarianou, Z. Zhou and M. R. Zalutsky, Org. Biomol. Chem., 2016, 14, 1261 DOI: 10.1039/C5OB02258D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements