Investigating the propagation kinetics of a novel class of nitrogen-containing methacrylates via PLP-SEC†
Abstract
The Mark–Houwink–Kuhn–Sakurada parameters as well as Arrhenius parameters of the propagation rate coefficient for a new group of nitrogen-containing methacrylates were determined via triple detector SEC and pulsed laser polymerization–size exclusion chromatography, respectively. The data obtained for 2-(N-ethylanilino)ethyl methacrylate (NEAEMA, A = 1.77 (−0.75 to +5.74) × 106 L mol−1 s−1; EA = 20.17 (−2.57 to +2.87) kJ mol−1), 2-morpholinoethyl methacrylate (MOMA, A = 1.48 (−0.58 to +4.22) × 106 L mol−1 s−1; EA = 19.59 (−2.12 to +2.72) kJ mol−1), and 2-(1-piperidyl)ethyl methacrylate (PipEMA, A = 1.96 (−0.65 to +2.92) × 106 L mol−1 s−1; EA = 20.27 (−1.47 to +1.97) kJ mol−1) can be described with joint Arrhenius parameters of A = 1.83 (−0.72 to +3.65) × 106 L mol−1 s−1; EA = 20.14 (−2.17 to +2.28) kJ mol−1 and introduce a new family of nitrogen-containing branched methacrylates. The data of this novel family are critically evaluated and compared to the existing data sets for methacrylates with branched and cyclic ester side chains, respectively.