Issue 10, 2016

Structure–property relationships in hybrid (C3H5N2)3[Sb2I9] and (C3H5N2)3[Bi2I9] isomorphs

Abstract

Two hybrid crystals imidazolium iodoantimonate(III) and iodobismuthate(III), (C3H5N2)3[Sb2I9] (ImIA) and (C3H5N2)3[Bi2I9] (ImIB), have been synthesized and characterized in a wide temperature range (100–350 K) by means of X-ray diffraction, dielectric spectroscopy, proton magnetic resonance (1H NMR), FT-IR spectroscopy and optical observations. They undergo two temperature induced solid–solid structural phase transitions. The first one, quasi-continuous (with temperature hysteresis below 1 K), occurs at 324 K in ImIA and 327 K in ImIB, and the second one, clearly of the first order, at 273/278 (cooling/heating) and 291/295 K, in ImIA and ImIB, respectively. Ferroelastic properties are maintained in low-temperature phases. Both materials are isomorphic in the corresponding phases. High temperature phase I has a hexagonal P63/mmc symmetry, and phase II has orthorhombic Cmcm. The crystal architecture is composed of discrete, face-sharing bioctahedra [M2I9]3− (M: Sb, Bi) and imidazolium cations which are highly disordered over phases I and II. The dynamics of the imidazolium cations has a prominent impact on the stability of the particular phases.

Graphical abstract: Structure–property relationships in hybrid (C3H5N2)3[Sb2I9] and (C3H5N2)3[Bi2I9] isomorphs

Supplementary files

Article information

Article type
Research Article
Submitted
19 Jul 2016
Accepted
21 Aug 2016
First published
22 Aug 2016

Inorg. Chem. Front., 2016,3, 1306-1316

Structure–property relationships in hybrid (C3H5N2)3[Sb2I9] and (C3H5N2)3[Bi2I9] isomorphs

M. Węcławik, A. Gągor, R. Jakubas, A. Piecha-Bisiorek, W. Medycki, J. Baran, P. Zieliński and M. Gałązka, Inorg. Chem. Front., 2016, 3, 1306 DOI: 10.1039/C6QI00260A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements