Issue 17, 2016

Functional, rheological and sensory properties of probiotic milk chocolate produced in a ball mill

Abstract

The aim of this study was to investigate the survival of probiotics (Lactobacillus acidophilus NCFM, Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019) in milk chocolate masses prepared at temperatures 35 °C and 40 °C. The influence of probiotics and preparation temperature on rheology, particle size distribution and sensory properties of the chocolates, was examined during 6 months of storage at 20 ± 2 °C. An inoculation temperature of 40 °C significantly improves the rheological and sensory properties of probiotic chocolate, as well as leading to the survival of L. acidophilus NCFM and L. rhamnosus HN001 strains. After 6 months of storage, the survival of these strains was above 90%, with a viable cell count of about 8.1 log(CFU g−1). An inoculation temperature of 40 °C provides higher scores of overall sensory quality (4.52–4.68), higher quality category (excellent), lower maximal viscosity (for 1.2 Pa s) of chocolates, than a temperature of 35 °C. Compared to the chocolate without probiotics, those inoculated at 40 °C achieved less increase in volume weighted mean diameter distribution (average 0.8%) than chocolates inoculated at 35 °C. Based on the results reported in this paper, seeding of the probiotics in industrial conditions can be done in the mixing tank (at 40 °C) before the phase of chocolate shaping. Addition of probiotics at this stage facilitates the manufacturing process, improves the overall quality of chocolate and preserves the probiotics as a key component of this type of product.

Graphical abstract: Functional, rheological and sensory properties of probiotic milk chocolate produced in a ball mill

Article information

Article type
Paper
Submitted
19 Oct 2015
Accepted
17 Jan 2016
First published
28 Jan 2016

RSC Adv., 2016,6, 13934-13941

Author version available

Functional, rheological and sensory properties of probiotic milk chocolate produced in a ball mill

D. B. Zarić, M. Lj. Bulatović, M. B. Rakin, T. Ž. Krunić, I. S. Lončarević and B. S. Pajin, RSC Adv., 2016, 6, 13934 DOI: 10.1039/C5RA21363K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements