Issue 7, 2016

Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential

Abstract

This work explored the efficiency and mechanisms of phosphate (P) removal by Ca-impregnated biochar prepared from CaCl2-pretreated ramie stem (Ca-RSB) and ramie bark (Ca-RBB). The properties of Ca-modified biochar were analyzed using elemental analysis, scanning electron microscopy (SEM), BET specific surface analysis, energy-dispersive X-ray analysis (EDS), Fourier transform infrared (FTIR) and a zeta potential meter. The results of characterization suggested that the Ca-RSB had a much higher H/C ratio, total pore volume, BET surface area and more functional groups compared with pristine biochar (RSB). In addition, a higher yield of Ca-RSB (50.8%) than RSB (28.0%) was also observed. Comparison experiments suggested that Ca-RSB showed higher adsorption capacity than Ca-RBB and the adsorption amount of Ca-RSB was more than two-folds that of RSB. Adsorption experimental data fitted well with pseudo-second order kinetics and the Langmuir isotherm. The intra-particle diffusion and Boyd's film-diffusion models revealed that the rate-controlled step was controlled by film-diffusion initially and then followed by intra-particle diffusion. Electrostatic attraction served as the main force to adsorb phosphates at a lower pH, and the precipitation and surface deposition took over at higher pH. The results of this study indicated that Ca-RSB is a potential effective and low-cost adsorbent for phosphate removal from wastewater.

Graphical abstract: Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2015
Accepted
01 Jan 2016
First published
06 Jan 2016

RSC Adv., 2016,6, 5871-5880

Author version available

Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential

S. Liu, X. Tan, Y. Liu, Y. Gu, G. Zeng, X. Hu, H. Wang, L. Zhou, L. Jiang and B. Zhao, RSC Adv., 2016, 6, 5871 DOI: 10.1039/C5RA22142K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements