Issue 11, 2016

Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals

Abstract

Poly(lactic acid)-cellulose nanocrystals (PLA/CNC) nanocomposite fibers with 1% weight fraction of nanocrystals were prepared via melt-spinning. In order to improve the compatibility between PLA and the CNC, PLLA chains were grafted onto the CNC surface using a “grafting from” reaction. For comparison, melt-spun PLA fibers and nanocomposites with unmodified CNC were also prepared. The morphology and thermal and mechanical properties of the fibers with different draw ratios were determined. The results of this research show that the surface modification together with drawing resulted in improved fiber properties, which are expected to depend on the alignment of the CNC and PLA molecular chains. The modification is also expected to lead to a flexible interface, which leads to more stretchable fibers. The main conclusion is that PLLA grafting is a very promising approach to improve the dispersion of CNC in PLA, thus creating interfacial adhesion between the phases and making it possible to spin fibers that can be drawn with improved mechanical performance.

Graphical abstract: Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals

Article information

Article type
Paper
Submitted
30 Oct 2015
Accepted
04 Jan 2016
First published
07 Jan 2016

RSC Adv., 2016,6, 9221-9231

Author version available

Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals

A. Mujica-Garcia, S. Hooshmand, M. Skrifvars, J. M. Kenny, K. Oksman and L. Peponi, RSC Adv., 2016, 6, 9221 DOI: 10.1039/C5RA22818B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements