New sterically hindered tin(iv) siloxane precursors to tinsilicate materials: synthesis, spectral, structural and photocatalytic studies†‡
Abstract
A series of sterically hindered tin(IV) siloxanes were synthesized by the reaction between tris(tert-butoxy)silanol/tri-phenylsilanol and organotin chlorides {[(tBu)2Sn(OSi(OtBu)3)2] (1), [(tBu)2Sn(OSi(OtBu)3)Cl] (2), [(n-Bu)2Sn(OSi(OtBu)3)2] (3), [(n-Bu)2Sn(OSi(OtBu)3)Cl] (4), [(Me)2Sn(OSi(OtBu)3)2] (5), [(Me)2Sn(OSi(OtBu)3)Cl] (6), [(tBu)2Sn(OSiPh3)2] (7), [(tBu)2Sn(OSiPh3)Cl] (8) whereas tBu = tertiary butyl; n-Bu = butyl; Me = methyl}. All the compounds were characterized by analytical and spectroscopic (FT-IR and 1H, 13C, 29Si, 119Sn NMR) methods. Compounds 1 and 7 were structurally characterized by single-crystal X-ray crystallography. The coordination geometry of tin (SnO2C2) is slightly distorted from tetrahedral due to sterically crowded ligands around the tin atom. In order to convert tinsilicate materials, compounds 1 and 3 were selected for thermolysis to give identical SnO2·2SiO2 materials at low temperature (∼350 °C). The degradation was investigated by thermal analysis (TGA/DTA), both compounds having butyl groups which facile eliminate to butene gas via a β-hydride elimination process (∼250 °C). The molecular route to oxide materials at low temperature described here represents an alternative to the sol–gel technique. The tinsilicate material was examined by several techniques including infrared, powder X-ray diffraction analysis (PXRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The optical band gap of the material has been studied by UV-vis-NIR spectroscopy and the result is a low band gap value (Eg = 2.549 eV) due to the silicon oxide mixed with tin oxide. The prepared material acts as photocatalyst for the degradation of methylene blue (MB).