A dithienodisilacyclohexadiene (DTDS)-based conjugated model semiconductor: understanding unique features and monitoring structural transition†
Abstract
To enable a superior σ*–π* conjugation, we present a dithienodisilacyclohexadiene (DTS) analogue of DTS(FBTTh2)2 – namely, DTDS(FBTTh2)2 – by replacing dithienosilole (DTS) with a dithienodisilacyclohexadiene (DTDS) ring in the main backbone, where DTDS possesses a double silicon-bridged bithiophene (Si–Si). With this replacement, a blue shift of the absorption and a high-lying LUMO are observed. Disclosed herein is a structural change of DTDS(FBTTh2)2 (DTDS to ox-DTDS skeleton as the corresponding oxidation structure) occurring under ambient conditions, which is monitored by real-time 1H NMR and UV absorption methods. This work not only provides a full understanding of the nature of DTDS, but also uses unique DTDS chemistry as a new toolbox to develop systems as novel functionality materials.