Issue 16, 2016

Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications

Abstract

This study aimed to fabricate 3D silk fibroin (SF) matrices for skin tissue engineering applications. SF/poly(ethylene oxide) solutions were wet electrospun to obtain a fibrous network (0.7–20 μm diameter), which were then lyophilized to obtain 3D porous nanofibrous matrices (SFM-E: ethanol treated silk fibroin matrices). SF matrices were loaded with citrate-capped gold nanoparticles (AuNPs, 14.27 ppm, Daverage = 24 nm) (SFM-AuE: ethanol treated silk fibroin matrices incorporated with AuNPs) and investigated for structural and chemical properties, in vitro biocompatibility and in vivo full-thickness dermal wound healing efficacy in a rat model. AuNP incorporation enhanced the degradation profiles and mechanical properties significantly. SFM-E and SFM-AuE showed similar cell attachment and layer by layer proliferation behaviour, but cells had more spread and flattened morphology on SFM-AuE. Both matrix extracts had high cell viability (>90%), indicating good in vitro biocompatibility. Wound closure was statistically more than the untreated skin control (UTSC) in SFM-E and SFM-AuE applied groups. The recovered tensile strength and elastic modulus of SFM-E and SFM-AuE (40–60%) were not as high as the unwounded skin control (UWSC), but they had elongation at break values similar to UWSC. This was attributed to the still ongoing medium to high inflammation levels leading to a low and immature extent of collagen fibrils on postoperative 14th day. There was only a small amount of epithelialization due to scab formation and medium to high level inflammation for both SFM-E and SFM-AuE, but they were better than UTSC in terms of neovascularization and granulation tissue formation. As a whole, inclusion of AuNPs to SF matrices at 14.27 ppm loading brought some enhancement in the matrix properties and did not cause any toxicity in in vitro and in vivo conditions and even had potency to promote wound healing stages.

Graphical abstract: Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2015
Accepted
23 Jan 2016
First published
26 Jan 2016

RSC Adv., 2016,6, 13234-13250

Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications

O. Akturk, K. Kismet, A. C. Yasti, S. Kuru, M. E. Duymus, F. Kaya, M. Caydere, S. Hucumenoglu and D. Keskin, RSC Adv., 2016, 6, 13234 DOI: 10.1039/C5RA24225H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements