Issue 12, 2016

Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines

Abstract

For the safe use of nanoparticles, especially in the biomedical field, their stability in different environments and the prevention of binding to the component organisms, which could lead to nanoparticle aggregation, is indispensable. Herein, we present a simple, efficient and biologically based method to obtain small gum arabic (GA)-stabilized gold nanoparticles (GA-AuNPs) with remarkable stability in physiological pHs. The in vitro stability tests in intestinal (pH 6.8) and gastric (pH 1.2) simulated pHs revealed that GA-AuNPs exhibit a surprisingly high stability even near the zero zeta potential. When subjected to GA-AuNPs, changes in the viability, proliferation and morphology were selectively induced in the B16-F10 melanoma cell line, whereas no alterations in the macrophage cell line, RAW 264.7, or in the fibroblast cell line, BALB/3T3, were observed at the same concentrations. Therefore, considering the remarkable stability and selective effect on cell lines, we show that GA-AuNPs exhibit properties that could provide a future alternative for melanoma treatment.

Graphical abstract: Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2015
Accepted
05 Jan 2016
First published
08 Jan 2016

RSC Adv., 2016,6, 9411-9420

Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines

H. Ribeiro de Barros, M. B. Cardoso, C. Camargo de Oliveira, C. R. Cavichiolo Franco, D. de Lima Belan, M. Vidotti and I. C. Riegel-Vidotti, RSC Adv., 2016, 6, 9411 DOI: 10.1039/C5RA24858B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements