Issue 14, 2016

Modulation of rat liver urea cycle and related ammonium metabolism by sex and cafeteria diet

Abstract

High-energy (hyperlipidic) cafeteria diets induce insulin resistance limiting glucose oxidation, and lower amino acid catabolism. Despite high amino-N intake, amino acids are preserved, lowering urea excretion. We analysed how energy partition induced by cafeteria diet affects liver ammonium handling and urea cycle. Female and male rats were fed control or cafeteria diets for 30 days. There was a remarkable constancy on enzyme activities and expressions of urea cycle and ammonium metabolism. The key enzymes controlling urea cycle: carbamoyl-P synthase 1, arginino-succinate synthase and arginase expressions were decreased by diet (albeit more markedly in males), and their activities were correlated with the gene expressions. The effects observed, in ammonium handling enzyme activities and expressions behaved in a way similar to that of the urea cycle, showing a generalized downregulation of liver amino acid catabolism. This process was affected by sex. The different strategies of amino-N handling by females and males further modulated the preservation of 2-amino N under sufficient available energy. The effects of sex were more marked than those of diet were, since different metabolism survival strategies changed substrate partition and fate. The data presented suggest a lower than expected N flow to the liver, which overall importance for amino acid metabolism tends to decrease with both cafeteria diet and female sex. Under standard conditions, liver availability of ammonium was low and controlled. The situation was unchanged (or even lowered) in cafeteria-fed rats, ultimately depending on intestinal amino acid catabolism.

Graphical abstract: Modulation of rat liver urea cycle and related ammonium metabolism by sex and cafeteria diet

Article information

Article type
Paper
Submitted
26 Nov 2015
Accepted
12 Jan 2016
First published
15 Jan 2016

RSC Adv., 2016,6, 11278-11288

Modulation of rat liver urea cycle and related ammonium metabolism by sex and cafeteria diet

S. Agnelli, S. Arriarán, L. Oliva, X. Remesar, J. Fernández-López and M. Alemany, RSC Adv., 2016, 6, 11278 DOI: 10.1039/C5RA25174E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements