Issue 14, 2016

Graphene oxide enhanced specificity at aptamer and its application to multiplexed enzymatic activity sensing

Abstract

We explore the effect of sufficient GO on the property of a dye labeled adenosine 5′-triphosphate (ATP) aptamer (P) which shows similar affinity and specificity for ATP and its analogues including adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP), and adenosine (AD). It is found that ATP and its analogues give rise to fluorescence recovery of GO-quenched P to a different extent (in the order of ATP > AD > ADP > AMP), and the difference becomes larger when increasing the concentration of GO in a certain range, implying an improvement of specificity of the ATP aptamer. Based on this finding, a fluorescence turn-on assay for alkaline phosphatase (ALP) and creatine kinase (CK) is proposed, by using AMP and ADP as the substrate, respectively. Specifically, the GO-quenched P system containing substrate shows low fluorescence intensity. In the presence of target enzyme, the substrate is converted into either AD or ATP which have higher affinity with P, resulting in stronger fluorescence of the mixture of P and GO. The entire assay is sensitive and selective. More importantly, the ability of GO with suitable concentration to improve the specificity of aptamers not only offers an exciting new way to detect protease, but also is valuable for developing the application of GO and aptamers in the biosensing field and is expected to be used in aptamer screening systems, to improve the specificity of screened aptamers.

Graphical abstract: Graphene oxide enhanced specificity at aptamer and its application to multiplexed enzymatic activity sensing

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2015
Accepted
10 Jan 2016
First published
14 Jan 2016

RSC Adv., 2016,6, 11815-11821

Graphene oxide enhanced specificity at aptamer and its application to multiplexed enzymatic activity sensing

X. Xing, X. Liu, Y. Zhou, D. Xu, D. Pang and H. Tang, RSC Adv., 2016, 6, 11815 DOI: 10.1039/C5RA25481G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements