Issue 23, 2016

Ag sensitized TiO2 and NiFe2O4 three-component nanoheterostructures: synthesis, electronic structure and strongly enhanced visible light photocatalytic activity

Abstract

This study reports on the synthesis and characterisation of two- and three-component visible light active photocatalytic nanoparticle heterostructures, based on TiO2 and NiFe2O4 and sensitized with Ag. We observe that a Ag content as small as 1 at% in the TiO2/NiFe2O4 heterostructure increases by more than an order of magnitude the rate constant for the visible light photocatalytic process. We rationalise this in terms of the measured structure and electronic structure data of the binary and ternary combinations of the component materials and focus on details, which show that an optimised deposition sequence is vital for attaining high values of photocatalytic efficiency, because the charge transfer across the interfaces appears to be sensitive to where the Ag is loaded in the heterostructure. The overall higher visible light photocatalytic activity of the TiO2/Ag/NiFe2O4 heterostructure was observed and is attributed to enhanced charge carrier separation efficiency and migration via vectorial electron transfer.

Graphical abstract: Ag sensitized TiO2 and NiFe2O4 three-component nanoheterostructures: synthesis, electronic structure and strongly enhanced visible light photocatalytic activity

Article information

Article type
Paper
Submitted
09 Jan 2016
Accepted
04 Feb 2016
First published
05 Feb 2016

RSC Adv., 2016,6, 18834-18842

Ag sensitized TiO2 and NiFe2O4 three-component nanoheterostructures: synthesis, electronic structure and strongly enhanced visible light photocatalytic activity

A. Šutka, T. Käämbre, R. Pärna, N. Döbelin, M. Vanags, K. Smits and V. Kisand, RSC Adv., 2016, 6, 18834 DOI: 10.1039/C6RA00728G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements