A modified UNIFAC-ZM model and phase equilibrium prediction of silicone polymers with ABE solution†
Abstract
The UNIFAC model and its various modified models on behalf of the group contribution methods offer reliable knowledge of phase equilibrium data, which are making great contributions for separation processes. The application of the UNIFAC-ZM model for the silicone polymer system is not only restricted by the poor accuracy under a large temperature range, but also limited by the lack of SiO group related group interaction parameters. In this work, first, modification of the model was made with consideration of the temperature effect on group interactions. Then inverse gas chromatography (IGC), a simple method to determine the infinite dilution activity coefficient, was applied to determine the interaction parameters between the common groups CH3, OH, H2O, CH3CO and SiO contained in polydimethylsiloxane (PDMS) based on the equilibrium chromatography theory. The achieved model was further proved to agree with the experimental results well. The new model was also applied in the calculation of the partition equilibrium between acetone/butanol/ethanol water solutions of different concentrations and PDMS of different polymerization degrees and side chain length. All these results would not only help the improvement of UNIFAC model, but also instruct the separation processes of silicone polymer compounds.