Water turbidity sensing using a smartphone†
Abstract
This paper demonstrates a rapid, cost-effective and field-portable smartphone based turbidimeter that measures turbidity of water samples collected from different natural water resources and in drinking water. The working of the designed sensor is based on a Mie-scattering principle where suspended micro (μ-) particles in water medium scatter a strong light signal along the normal direction of the incoming light signal, which can be detected by an infra-red (IR) proximity sensor embedded in the smartphone. Two freely available android applications were used to measure the irradiance of the scattered flux and analyse the turbidity of the medium. With the designed sensor, water turbidity variation as low as 0.1 NTU can be measured accurately in the turbidity value ranging from 0 to 400 NTU. The sensor responses for these ranges of turbid media are found to be linear. A high repeatability in the sensor characteristics is also been observed. The optics design involved for the development of the proposed smartphone turbidimeter is simple and is robust in operation. The designed sensing technique could emerge as a truly portable, user-friendly and inexpensive turbidity sensing tool that would be useful for different in-field applications.