Issue 39, 2016, Issue in Progress

Nonclassical from-shell-to-core growth of hierarchically organized SAPO-11 with enhanced catalytic performance in hydroisomerization of n-heptane

Abstract

Integrating hierarchical porosity over microporous zeotype materials is an effective way to promote their mass transfer properties and catalytic performances. A combined synthetic strategy using small molecular growth inhibitor 1,2,3-hexanetriol and tumbling crystallization condition to generate hierarchically organized SAPO-11 is herein presented. The addition of 1,2,3-hexanetriol in the synthetic gel of SAPO-11 under agitating conditions significantly altered its crystallization behaviour, resulting in the formation of a hierarchically organized architecture. An underlying nonclassical from-shell-to-core crystallization has been disclosed by time-dependent observation of the formation process. The hierarchically self-organized structure has been characterized by a suite of characterization techniques, such as XRD, N2 physisorption, SEM, TEM, mercury intrusion measurements, 27Al, 29Si, 31P MAS NMR and pyridine adsorption IR (Py-IR). The structure featuring barrel-shaped architecture is comprised of aligned 300–400 nm primary building blocks with voids in between, constructing an auxiliary macro-/meso-pore system open to external surfaces. The catalytic performance of Pt supported on hierarchical SAPO-11 in n-heptane hydroisomerization has been assessed, showing that both catalytic activity and isomer yield have been increased with respect to a conventional sample. As the acidity for the hierarchical SAPO-11 is comparable to the conventional sample, the enhancement in catalytic performance is attributed to the small primary crystal size and macro-/meso-pore-connectivity, that are important for mass transfer.

Graphical abstract: Nonclassical from-shell-to-core growth of hierarchically organized SAPO-11 with enhanced catalytic performance in hydroisomerization of n-heptane

Supplementary files

Article information

Article type
Paper
Submitted
02 Feb 2016
Accepted
16 Mar 2016
First published
18 Mar 2016

RSC Adv., 2016,6, 32523-32533

Nonclassical from-shell-to-core growth of hierarchically organized SAPO-11 with enhanced catalytic performance in hydroisomerization of n-heptane

D. Jin, Z. Liu, J. Zheng, W. Hua, J. Chen, K. Zhu and X. Zhou, RSC Adv., 2016, 6, 32523 DOI: 10.1039/C6RA03039D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements