Issue 59, 2016, Issue in Progress

Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge

Abstract

A novel heterogeneous catalyst [HVIm-(CH2)3SO3H]HSO4@HKUST-1 (IL@HKUST-1), with both Lewis and Brønsted acid sites, was developed for the esterification of oleic acid with short-chain alcohols. HKUST-1 was chemically modified with ethanedithiol, and the vinyl-containing ionic liquid was then grafted onto the carrier through thiol groups. The catalyst IL@HKUST-1 was characterized by XRD, N2 adsorption–desorption, FT-IR, SEM, TG, elemental analysis, and ICP. The results proved that HKUST-1 had typical microporous structure, and the thiol groups were incorporated into the channels of the carrier. Through the reaction of vinyl and thiol, the ionic liquid was successfully immobilized onto SH-HKUST-1 by chemical covalent bonds. The catalyst was applied in the esterification of oleic acid with ethanol, and the optimal conditions were determined as follows: molar ratio of ethanol to oleic acid 12 : 1, catalyst amount 15 wt% (based on oleic acid), reaction time 4 h, and reaction temperature 90 °C. Under the conditions, the conversion of oleic acid was 92.1%. After 5 times of recycling, there was no significant decrease in conversion, showing a certain stability and good reusability of the catalyst. The catalyst also exhibited high catalytic activity in esterification of oleic acid with other short-chain alcohols.

Graphical abstract: Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge

Article information

Article type
Paper
Submitted
04 Feb 2016
Accepted
27 May 2016
First published
27 May 2016

RSC Adv., 2016,6, 54119-54128

Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge

C. Chen, Z. Wu, Y. Que, B. Li, Q. Guo, Z. Li, L. Wang, H. Wan and G. Guan, RSC Adv., 2016, 6, 54119 DOI: 10.1039/C6RA03317B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements