Issue 44, 2016, Issue in Progress

Transcriptome-guided discovery and functional characterization of two UDP-sugar 4-epimerase families involved in the biosynthesis of anti-tumor polysaccharides in Ornithogalum caudatum

Abstract

UDP-glucose 4-epimerase (UGE) and UDP-xylose 4-epimerase (UXE), two important UDP-sugar 4-epimerases, are well known to be essential for de novo biosynthesis of UDP-D-galactose and UDP-L-arabinose, two universal sugar donors for the formation of four galactose- and arabinose-containing anticancer polysaccharides in Ornithogalum caudatum. However, very little is known about their cDNA sequences. Furthermore, the functional significance of the two epimerases in the biosynthesis of these anticancer polysaccharides in O. caudatum had not been documented. Here, we presented a full characterization of UGE and UXE, which were deemed to be responsible for anticancer polysaccharides biosynthesis in O. caudatum. Specifically, a transcriptome-guided search for the two epimerase genes in O. caudatum was first performed in the present study. A total of 4 unigenes sharing high sequence identity with UDP-sugar 4-epimerases were retrieved from transcriptome assembly. Four full-length cDNAs encoding UDP-sugar 4-epimerases, including two UGE-like and two UXE-like genes, were then isolated by reverse transcription polymerase chain reaction (RT-PCR) from O. caudatum. Bio-informatic analysis indicated the two UDP-sugar 4-epimerase families shared two common conserved domains, namely an N-terminal GxxGxxG motif and a catalytic Ser/Thr-Tyr-Lys triad. A phylogenetic analysis revealed the two members in the same UGE family could be classified into two subgroups, revealing their divergently functional significance. These candidate isoenzymes were screened by functional expression in E. coli individually as standalone enzymes. Two UGE-like cDNAs were identified to be bona fide genes, exhibiting both UGE and UXE activities. To further explore the possible role of these epimerase proteins in polysaccharides biosynthesis, transcript profiles of the four genes were subsequently examined by real-time quantitative PCR in various O. caudatum tissues. OcUGE1, OcUGE2 and OcUXE1 were therefore assumed to be responsible for the biosynthesis of the four galactose- and arabinose-containing polysaccharides due to their expression profiles in O. caudatum. Taken together, these data provide further comprehensive knowledge for polysaccharides biosynthesis in O. caudatum and broaden the potential application of UGE in metabolic engineering or synthetic biology as a potential gene part.

Graphical abstract: Transcriptome-guided discovery and functional characterization of two UDP-sugar 4-epimerase families involved in the biosynthesis of anti-tumor polysaccharides in Ornithogalum caudatum

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2016
Accepted
05 Apr 2016
First published
06 Apr 2016

RSC Adv., 2016,6, 37370-37384

Transcriptome-guided discovery and functional characterization of two UDP-sugar 4-epimerase families involved in the biosynthesis of anti-tumor polysaccharides in Ornithogalum caudatum

S. Yin and J. Kong, RSC Adv., 2016, 6, 37370 DOI: 10.1039/C6RA03817D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements