Issue 42, 2016

Atmospheric chemistry of ethers, esters, and alcohols on the lifetimes, temperature dependence, and kinetic isotope effect: an example of CF3CX2CX2CX2OX with OX reactions (X = H, D)

Abstract

The dual-level direct dynamics method is employed to investigate the hydrogen abstraction reaction of CF3CH2CH2CH2OH (CF3CD2CD2CD2OD) with OH (OD) radicals. Four possible reaction channels caused by different positions of hydrogen atom attack are found. All the stationary points are studied with the ab initio and density functional theories. Single points computation is further refined by CCSD(T) and QCISD(T) methods combined with the 6-311++G(d,p) basis set in the minimum energy paths (MEP). Rate constants for each reaction channel, obtained by canonical variational transition state (CVT) coupled with the small curvatures tunneling (SCT) correction, are found to coincide with the available data in experiments. Calculations show that the variational effect was small in 200–2000 K, while the tunneling effect is large for every reaction channel in low-temperature regions. It is shown that the H-abstraction from the –CH2O– group is the primary channel. Standard enthalpies of formation for the species are computed, and the kinetic isotope effects for reactions CF3CH2CH2CH2OH/CF3CD2CD2CD2OD + OH and CF3CH2CH2CH2OH + OH/OD are discussed to provide valuable information for subsequent research. In addition, atmospheric lifetimes of a series of related ethers, esters, and alcohols are estimated. The Arrhenius expression for the title reaction k(T) = 3.43 × 10−21T3.22 exp(741.70/T) cm3 per molecule per s is also provided.

Graphical abstract: Atmospheric chemistry of ethers, esters, and alcohols on the lifetimes, temperature dependence, and kinetic isotope effect: an example of CF3CX2CX2CX2OX with OX reactions (X = H, D)

Supplementary files

Article information

Article type
Paper
Submitted
24 Feb 2016
Accepted
03 Apr 2016
First published
05 Apr 2016

RSC Adv., 2016,6, 36096-36108

Atmospheric chemistry of ethers, esters, and alcohols on the lifetimes, temperature dependence, and kinetic isotope effect: an example of CF3CX2CX2CX2OX with OX reactions (X = H, D)

F. Bai, X. Wang, Y. Sun, R. Wang and X. Pan, RSC Adv., 2016, 6, 36096 DOI: 10.1039/C6RA04902H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements