Issue 53, 2016, Issue in Progress

Theoretical design of highly energetic poly-nitro cage compounds

Abstract

In this work, we report on the design and full prediction of four poly-nitro cage compounds, octanitrooctaprismane (ONOP), octanitrooctaazaprismane (ONOAP), tetranitrooctaprismane (TNOP), and tetranitrooctaazaprismane (TNOAP) at the B3LYP/6-31G (d,p) level using density functional theory (DFT). The results show that all compounds possess large positive heats of formation (HOF) and specific enthalpies of combustion (ΔHC). The detonation velocity (D) and pressure (P) are calculated using Kamlet–Jacobs equations, and ONOP, ONOAP, and TNOAP showed a superior performance in comparison to commonly used energetic materials, 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and 1,3,5-trinitro-1,3,5-triazinane (RDX). Calculation of the bond dissociation energy (BDE) is carried out and reveals good thermal stabilities for all compounds. In terms of sensitivity, molecules with four nitro groups (TNOP and TNOAP) display lower sensitivity than those with eight nitro groups (ONOP and ONOAP). Importantly, TNOAP outshines other molecules due to its superior energetic properties, compared to those of HMX, and good sensitivity, less than that of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and comparable to that of RDX, so we recommend TNOAP as a promising HEDM candidate.

Graphical abstract: Theoretical design of highly energetic poly-nitro cage compounds

Supplementary files

Article information

Article type
Paper
Submitted
29 Feb 2016
Accepted
29 Apr 2016
First published
29 Apr 2016

RSC Adv., 2016,6, 47607-47615

Theoretical design of highly energetic poly-nitro cage compounds

M. Tian, W. Chi, Q. Li and Z. Li, RSC Adv., 2016, 6, 47607 DOI: 10.1039/C6RA05352A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements