Issue 57, 2016, Issue in Progress

Effect of dual-doping on the thermoelectric transport properties of CaMn1−xNbx/2Tax/2O3

Abstract

The dual-substituted CaMn1−xNbx/2Tax/2O3 is synthesized by solid-state reaction and it's crystal structure-thermoelectric property relationship is established. Rietveld refinement confirms the formation of a single phase orthorhombic structure with a gradual increase of cell parameters and bond lengths with doping level. The electrical resistivity (ρ) shows non-metal like temperature dependence. The ρ-value decreases with increasing doping level indicating an increase in charge-carrier concentration through formation of Mn3+ ions with e1g electron in the Mn4+ matrix of CaMn1−xNbx/2Tax/2O3. The shallow region observed around 500 K in the resistivity curve is interpreted as the formation of local charge-ordering clusters due to the presence of oxygen vacancies in CaMn1−xNbx/2Tax/2O3. The Seebeck coefficient initially decreases with temperature as expected from increasing charge carrier concentration. Above 600 K, the Seebeck coefficient increases with temperature as oxygen vacancies start playing the dominant role. The relatively low thermal conductivity of CaMn1−xNbx/2Tax/2O3 results from the damping of local vibration through substitution of heavier ions of Nb and Ta as well as crystallographic distortion. The dual-substituted CaMn1−xNbx/2Tax/2O3 shows a maximum power factor of 200 μW m−1 K−2 and dimensionless figure-of-merit (ZT) of 0.15 at x = 0.04, arising from low electrical resistivity of 15 mΩ cm, a moderate Seebeck coefficient of −176 μV K−1 and low thermal conductivity of 1.2 W m−1 K−1.

Graphical abstract: Effect of dual-doping on the thermoelectric transport properties of CaMn1−xNbx/2Tax/2O3

Supplementary files

Article information

Article type
Paper
Submitted
07 Mar 2016
Accepted
23 May 2016
First published
23 May 2016

RSC Adv., 2016,6, 52318-52325

Effect of dual-doping on the thermoelectric transport properties of CaMn1−xNbx/2Tax/2O3

R. S. C. Bose and A. Nag, RSC Adv., 2016, 6, 52318 DOI: 10.1039/C6RA06032C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements