Issue 39, 2016, Issue in Progress

Selective homodimerization of unprotected peptides using hybrid hydroxydimethylsilane derivatives

Abstract

We developed a simple and straightforward way to dimerize unprotected peptide sequences that relies on a chemoselective condensation of hybrid peptides bearing a hydroxydimethylsilyl group at a chosen position (either C-ter, N-ter or side-chain linked) to generate siloxane bonds upon freeze-drying. Interestingly, the siloxane bond sensitivity to hydrolysis is strongly pH-dependent. Thus, we investigated the stability of siloxane dimers in different experimental conditions. For that purpose, 29Si, 13C and 1H NMR spectra were recorded to accurately quantify the ratio of dimer/monomer. More interestingly, we showed that 1H resonances of the methylene and methyl groups connected to the Si can be used as sensitive probes to monitor siloxane hydrolysis and to determine the half-lives of the dimers. Importantly, we showed that the dimers were rather stable at pH 7.4 (t1/2 ≈ 400 h) and we applied the dimerization strategy to bioactive sequences. Once optimized, three dimers of the growth hormone releasing hexapeptide (GHRP-6) were prepared. Interestingly, their pharmacological evaluation revealed that the activity of the dimeric ligands could be switched from agonist to inverse agonist depending on the position of dimerization.

Graphical abstract: Selective homodimerization of unprotected peptides using hybrid hydroxydimethylsilane derivatives

Supplementary files

Article information

Article type
Paper
Submitted
07 Mar 2016
Accepted
23 Mar 2016
First published
24 Mar 2016

RSC Adv., 2016,6, 32905-32914

Selective homodimerization of unprotected peptides using hybrid hydroxydimethylsilane derivatives

C. Echalier, A. Kalistratova, J. Ciccione, A. Lebrun, B. Legrand, E. Naydenova, D. Gagne, J. Fehrentz, J. Marie, M. Amblard, A. Mehdi, J. Martinez and G. Subra, RSC Adv., 2016, 6, 32905 DOI: 10.1039/C6RA06075G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements