Issue 38, 2016

Impact of structure and homo-coupling of the central donor unit of small molecule organic semiconductors on solar cell performance

Abstract

Currently, both low bandgap conjugated polymers and small molecule analogues are employed as electron donor components in state of the art bulk heterojunction organic photovoltaics, providing similar record efficiencies (∼10%). However, to evaluate molecular structure-device performance relations and (in particular) the effect of material purity, small molecule chromophores can be considered to be more versatile probes. In the present study, we have synthesized three small molecule donor materials with a varying central electron-rich building block, inspired by the well-known high-performance small molecule p-DTS(FBTTh2)2. The influence of this structural modification on the physicochemical material properties, electro-optical characteristics and solar cell performance is analysed. Most importantly, it is shown that the presence of homo-coupled side products generated during Stille cross-coupling reactions – which can be very hard to remove, even for small molecule semiconductors – is detrimental to solar cell performance, with a noticeable effect on the open-circuit voltage.

Graphical abstract: Impact of structure and homo-coupling of the central donor unit of small molecule organic semiconductors on solar cell performance

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2016
Accepted
22 Mar 2016
First published
24 Mar 2016
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2016,6, 32298-32307

Author version available

Impact of structure and homo-coupling of the central donor unit of small molecule organic semiconductors on solar cell performance

P. Verstappen, I. Cardinaletti, T. Vangerven, W. Vanormelingen, F. Verstraeten, L. Lutsen, D. Vanderzande, J. Manca and W. Maes, RSC Adv., 2016, 6, 32298 DOI: 10.1039/C6RA06146J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements