Issue 52, 2016

Improved H2 uptake capacity of transition metal doped benzene by boron substitution

Abstract

The effect of boron substitution on hydrogen storage capacity of transition metal (TM) doped benzene is studied using density functional theory and the second order Møller–Plesset method with aug-cc-pVDZ basis set. Out of the six carbon atoms in a benzene ring, two are substituted by boron atoms. The structures considered here are C4B2H6TM (TM = Sc, Ti, V). Four, four and three H2 molecules can be adsorbed on unsubstituted C6H6Sc, C6H6Ti and C6H6V complexes, respectively, whereas upon boron substitution one additional H2 molecule gets adsorbed on each of these complexes. The H2 uptake capacity of C4B2H6Sc, C4B2H6Ti and C4B2H6V obtained is 7.71, 7.54 and 5.99 wt%, respectively. Gibbs free energy corrected adsorption energies show that H2 adsorption on C4B2H6Sc is energetically unfavorable whereas it is favorable on C4B2H6Ti and C4B2H6V at ambient conditions. Various interaction energies for the H2 adsorbed complexes are obtained using a many-body analysis technique. The H2 desorption temperature for boron substituted TM doped benzene is lower than that for TM doped benzene for all the three systems. Molecular dynamics simulations show that loosely bonded H2 molecules in C4B2H6Sc(5H2) and C4B2H6Ti(5H2) complexes fly away during the simulation, thereby showing lower H2 uptake capacity of these complexes than that obtained by electronic structure calculations.

Graphical abstract: Improved H2 uptake capacity of transition metal doped benzene by boron substitution

Article information

Article type
Paper
Submitted
11 Mar 2016
Accepted
05 May 2016
First published
06 May 2016

RSC Adv., 2016,6, 47033-47042

Improved H2 uptake capacity of transition metal doped benzene by boron substitution

A. Deshmukh, R. Konda, V. Kalamse and A. Chaudhari, RSC Adv., 2016, 6, 47033 DOI: 10.1039/C6RA06483C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements