Issue 65, 2016, Issue in Progress

Synthesis and properties of polyimide foams containing benzimidazole units

Abstract

In this research paper, a series of novel polyimide (PI) foams containing benzimidazole units were prepared derived from polyester ammonium salt (PEAS) precursor powders, which were synthesized by co-polymerization of benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) with two diamines of 2-(4-aminophenyl)-5-aminobenzimidazole (BIA) and 4,4′-diaminodiphenyl ether (ODA) with various molar ratios. The effects of incorporation of BIA on the morphology, thermal and mechanical properties of co-polyimide (co-PI) foams were explored. The results show that the BIA has a significant influence on foaming degree of PEAS precursor powders. The density of co-polyimide foams increases with increasing the BIA content in the polymer chains. Moreover, the thermal stability of the resultant co-polyimide foams presents a remarkable upward trend with incorporating more BIA units into the polymer chains. As the BIA loading up to 30 mol%, the glass transition temperature of co-polyimide foams increases around 50 °C in comparison with the pristine polyimide foam. Furthermore, the compressive strength of the co-polyimide foams is in the range of 0.30–0.75 MPa, which is superior to their of commercial polyimide foams with the same density. The co-polyimide foams with higher thermal and mechanical properties expand their potential application in many high-tech fields such as aerospace and aviation industries.

Graphical abstract: Synthesis and properties of polyimide foams containing benzimidazole units

Article information

Article type
Paper
Submitted
31 Mar 2016
Accepted
09 Jun 2016
First published
10 Jun 2016

RSC Adv., 2016,6, 60094-60100

Synthesis and properties of polyimide foams containing benzimidazole units

J. Li, G. Zhang, Y. Yao, Z. Jing, L. Zhou and Z. Ma, RSC Adv., 2016, 6, 60094 DOI: 10.1039/C6RA08271H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements