N, S and P-ternary doped carbon nano-pore/tube composites derived from natural chemicals in waste sweet osmanthus fruit with superior activity for oxygen reduction in acidic and alkaline media†
Abstract
To promote the practical application of novel heteroatom-doped carbon electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, in this work, low-cost nitrogen (N), sulfur (S) and phosphorus (P)-ternary doped carbon nano-pore/tube composites (NSP-CNPTCs) were synthesized by natural, cheap and environment-friendly N, S and P-containing chemicals extracted from waste sweet osmanthus fruit and a certain amount of dicyandiamide with ferric sulfate as a catalyst. Electrochemical tests demonstrated that the as-prepared NSP-CNPTCs exhibited superior ORR activity in both acidic and alkaline media, showing a new approach for utilizing natural heteroatom-containing chemicals in all heteroatom-rich biomasses to synthesize value-added heteroatom-doped carbon electrocatalysts in future fuel cells.