Issue 67, 2016, Issue in Progress

Covalent surface modification of α-MnO2 nanorods with l-valine amino acid by solvothermal strategy, preparation of PVA/α-MnO2-l-valine nanocomposite films and study of their morphology, thermal, mechanical, Pb(ii) and Cd(ii) adsorption properties

Abstract

The surface of α-manganese dioxide (α-MnO2) nanorods was modified chemically with L-valine amino acid by a solvothermal strategy. The α-MnO2 nanorods were prepared by a hydrothermal method. Then poly(vinyl alcohol)/α-MnO2-L-valine nanocomposites (NCs) containing 1, 3 and 5 wt% of modified α-MnO2 nanorods were prepared through an ultrasound-assisted technique. Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and UV-visible spectroscopy were used to investigate and characterize nanostructures and NCs. Following this, the effects of α-MnO2-L-valine nanorods on the properties of NCs, such as the mechanical and thermal properties, were studied. The Brunauer–Emmett–Teller (BET) results showed that NC 3 wt% had higher surface area, pore volume and pore size than pure PVA with mesoporous structure. Finally, NC 3 wt% was investigated as an adsorbent for sorption of Pb(II) and Cd(II) ions. It showed good adsorption potential for the removal of Pb(II) and Cd(II) in aqueous solution.

Graphical abstract: Covalent surface modification of α-MnO2 nanorods with l-valine amino acid by solvothermal strategy, preparation of PVA/α-MnO2-l-valine nanocomposite films and study of their morphology, thermal, mechanical, Pb(ii) and Cd(ii) adsorption properties

Article information

Article type
Paper
Submitted
29 Apr 2016
Accepted
21 Jun 2016
First published
22 Jun 2016

RSC Adv., 2016,6, 62602-62611

Covalent surface modification of α-MnO2 nanorods with L-valine amino acid by solvothermal strategy, preparation of PVA/α-MnO2-L-valine nanocomposite films and study of their morphology, thermal, mechanical, Pb(II) and Cd(II) adsorption properties

S. Mallakpour and F. Motirasoul, RSC Adv., 2016, 6, 62602 DOI: 10.1039/C6RA11123H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements