Issue 104, 2016, Issue in Progress

Germanene: a new electronic gas sensing material

Abstract

The structural stability and electronic properties of the adsorption characteristics of several toxic gas molecules (NH3, SO2 and NO2) on a hexagonal armchair of a germanene monolayer were investigated using density functional theory (DFT) based on an ab initio method. The sensitivity of the germanene monolayer has been investigated by considering the most stable adsorption configurations, adsorption energies, projected density of states and charge transfer between the monolayer and gas molecules. The adsorption energy of NO2 gas molecules on the germanene monolayer was the lowest energy (273.72 meV: B-type configuration) compared to all other possible configurations and also higher than that of NH3 and SO2. The charge transfer between the NO2 gas molecules and the germanene is the same order of magnitude, but larger than compared to that of NH3 and SO2 gas molecules. The higher charge transfer between the monolayer and gas molecules shows that this configuration can be utilized in germanene based field effect transistor (FET) sensors due to its greater stability and sensitivity.

Graphical abstract: Germanene: a new electronic gas sensing material

Article information

Article type
Paper
Submitted
07 May 2016
Accepted
15 Sep 2016
First published
20 Sep 2016

RSC Adv., 2016,6, 102264-102271

Germanene: a new electronic gas sensing material

S. K. Gupta, D. Singh, K. Rajput and Y. Sonvane, RSC Adv., 2016, 6, 102264 DOI: 10.1039/C6RA11890A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements