Issue 80, 2016, Issue in Progress

Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analysis

Abstract

The strategy of confining stimuli-responsive microgels in electrospun fibres would allow the fabrication of polymeric networks that combine the microgels swelling ability and properties with the interest features of the electrospun fibres. Colloidal electrospinning is an emerging method in which fibres containing microgels can be produced by a single-nozzle and designed through the solution carrier materials. The incorporation of poly(N-isopropylacrylamide) (PNIPAAM) and PNIPAAM–chitosan (PNIPAAM–CS) in poly(ethyleneoxyde) (PEO) fibres via colloidal electrospinning producing composite fibres was the main purpose of the present work, which was confirmed by means of Scanning Electron Microscopy (SEM). Dynamic light scattering was used to analyse the microgels hydrodynamic diameter ranging up to 900 nm depending on the composition and temperature of the surrounding medium. By performing a statistical analysis the relationship of the processing variables over the fibre size was evaluated following the response surface methodology (RSM). From the set of parameters aimed to minimize the fibre diameter, composite fibres with an average diameter of 63 nm were produced. Only the as-prepared microgels with higher monodispersity provided “bead-on-a-string” morphologies.

Graphical abstract: Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analysis

Supplementary files

Article information

Article type
Paper
Submitted
16 May 2016
Accepted
08 Aug 2016
First published
08 Aug 2016

RSC Adv., 2016,6, 76370-76380

Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analysis

S. C. S. Marques, P. I. P. Soares, C. Echeverria, M. H. Godinho and J. P. Borges, RSC Adv., 2016, 6, 76370 DOI: 10.1039/C6RA12713D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements