Synergistic catalysis within TEMPO-functionalized periodic mesoporous organosilica with bridge imidazolium groups in the aerobic oxidation of alcohols†
Abstract
Anchoring 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) within the nanospaces of a periodic mesoporous organosilica with bridged imidazolium groups led to an unprecedented powerful bifunctional catalyst (TEMPO@PMO-IL-Br), which showed enhanced activity in the metal-free aerobic oxidation of alcohols. The catalyst and its precursors were characterized by N2 adsorption–desorption analysis, transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), thermal gravimetric analysis (TGA), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), solid state electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, transmission electron microscopy (TEM) and high resolution TEM. It was clearly found that the catalytic activity of SBA-15-functionalized TEMPO (TEMPO@SBA-15) not bearing IL, TEMPO@PMO-IL-Cl, PMO-IL-AMP, or individual catalytic functionalities (PMO-IL/TEMPO@SBA-15) was inferior as compared with those obtained from TEMPO@PMO-IL-Br in the metal-free aerobic oxidation of benzyl alcohol, suggesting the critical role of co-supported TEMPO and imidazolium bromide in obtaining high catalytic activity in the described catalyst system. Our observation clearly points to the fact that the combination of imidazolium bromide units in close proximity to TEMPO moieties in the nanospaces of TEMPO@PMO-IL-Br might be indeed one of the key factors explaining the enhanced catalytic activity observed for this catalyst in the oxidation of benzyl alcohol, possibly through a synergistic catalysis relay pathway. A proposed model was suggested for the observed synergistic effect.