Versatile interactions of boron fullerene B80 with gas molecules†
Abstract
Stable all-boron fullerene B80 supplements a family of elemental cage molecules. These molecules may initiate a drastic rise to intriguing new chemistry. The principal stability of B80 was recently demonstrated using photoelectron spectroscopy. We report the systematic investigation of different aspects of B80 interactions with small gas molecules—such as carbon dioxide, molecular hydrogen, hydrogen sulfide, hydrogen fluoride, ammonia and sulfur dioxide—employing density functional theory. We found peculiar interactions between B80 and ammonia resulting in the formation of a weak boron–nitrogen covalent bond in one of their local-minimum configurations. Hydrogen fluoride maintains a weak hydrogen bond with B80. The boron fullerene was found to be strongly polarizable, with its electron density distribution changing significantly even in the presence of low-polar gases. The binding energies of the gas molecules to B80 are generally in direct proportion to their dipole moments. Valence bands are predominantly localized on B80. According to the present findings, one of the prospective applications of B80 in future may be gas capture and separation.