Issue 93, 2016

Synthesis and structure of novel Ag2Ga2SiSe6 crystals: promising materials for dynamic holographic image recording

Abstract

Phase diagrams of the AgGaSe2–SiSe2 system were explored by differential thermal analysis (DTA) and X-ray diffraction (XRD) analysis methods for the first time. It was demonstrated that the investigated system forms quaternary compounds of compositions Ag2Ga2SiSe6 and AgGaSiSe4. Ag2Ga2SiSe6 melts at 1042 K and exists in two polymorphous modifications. The crystal structure of the low-temperature modification was determined by the single crystal method (space group I[4 with combining macron]2d (122) and lattice parameters a = 5.9021(1) Å, b = 5.9021(1) Å, and c = 10.4112(10) Å). Additional details (CIF file) regarding the crystal structure investigations are available at the Fachinformationszentrum Karlsruhe. The band gap (Eg) of the Ag2Ga2SiSe6 system was estimated from the fundamental absorption edge and we showed that it decreases with increasing temperature (100–300 K) from 2.13 eV to 1.97 eV. The compound is photosensitive and its spectral dependence on the photoconductivity has two maxima: at λmax1 = 640 nm and λmax2 = 900 nm. For the pristine Ag2Ga2SiSe6 crystal surface, X-ray photoelectron core-level and valence-band spectra were obtained. The X-ray photoelectron valence-band spectrum of Ag2Ga2SiSe6 was compared on a common energy scale with the X-ray emission Se Kβ2 and Ga Kβ2 bands, representing peculiarities of the energy distribution of the Se 4p and Ga 4p states, respectively. The comparison revealed that the principal contributions of the valence Se p and Ga p states occur in the upper and central parts of the valence band, respectively, with significant contributions to other valence band regions. The illumination by the bicolour coherent pulses of the Er:glass nanosecond lasers at different angles led to the formation of the gratings, which are sensitive to the irradiation time.

Graphical abstract: Synthesis and structure of novel Ag2Ga2SiSe6 crystals: promising materials for dynamic holographic image recording

Article information

Article type
Paper
Submitted
02 Aug 2016
Accepted
02 Sep 2016
First published
07 Sep 2016

RSC Adv., 2016,6, 90958-90966

Synthesis and structure of novel Ag2Ga2SiSe6 crystals: promising materials for dynamic holographic image recording

O. V. Parasyuk, V. V. Pavlyuk, O. Y. Khyzhun, V. R. Kozer, G. L. Myronchuk, V. P. Sachanyuk, G. S. Dmytriv, A. Krymus, I. V. Kityk, A. M. El-Naggar, A. A. Albassam and M. Piasecki, RSC Adv., 2016, 6, 90958 DOI: 10.1039/C6RA19558J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements