Issue 100, 2016, Issue in Progress

Biodegradable pH-sensitive polyurethane micelles with different polyethylene glycol (PEG) locations for anti-cancer drug carrier applications

Abstract

Biodegradable multi-blocked polyurethane (PU) based micelles with a hydrophilic PEG corona were extensively studied for anti-cancer drug delivery systems. The hydrophilic PEG segment usually incorporated as a soft segment or as an end capping reagent, which has difficulty forming a dense PEG coating with a brush like conformation due to the low mobility of the PEG domains at the soft segment and the low amount of the PEG at the end of PU chains. In the present study, biodegradable pH sensitive polyurethane micelles with a dense brush like coating of PEG were prepared by a new kind of PEG grafted polyurethanes (PEG-g-PU) which were synthesized using PEGylated diethanolamine (MPEG-DEAM) as a chain extender. The high mobility of pendant MPEG in PEG-g-PU results in the formation of a dense and brush like PEG corona on the PEG-g-PU micelles. Meanwhile the MPEG attached on the hard segment will transfer the diethanolamine (DEAM) to the surface of nanoparticles during the self-assembly process and the DEAM render the particles with positive charges which potentially enhances cellular uptake and endosomal escape. DLS, TEM and AFM showed that a dense PEG domain was formed on the surface of PEG-g-PU micelles while no obvious PEG microdomain was observed for the other two kinds of micelles. FTIR and DSC results demonstrated the enhanced microphase separation of PEG-g-PU micelles compared with PEG-g-PU bulk materials and the other two contrast PU micelles, i.e. PEG-b-PU and PEG-c-PU. Paclitaxel (PTX) was chosen as a model hydrophobic drug to evaluate the loading and pH-triggered release of the PU micelles. The enhanced cytotoxicity of PTX-loaded PEG-g-PU-3 micelles against H460 cancer cells reveals that they are more potent for intracellular delivery of PTX as compared to PEG-b-PU-3 and PEG-c-PU-3 micelles.

Graphical abstract: Biodegradable pH-sensitive polyurethane micelles with different polyethylene glycol (PEG) locations for anti-cancer drug carrier applications

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2016
Accepted
22 Sep 2016
First published
23 Sep 2016

RSC Adv., 2016,6, 97684-97693

Biodegradable pH-sensitive polyurethane micelles with different polyethylene glycol (PEG) locations for anti-cancer drug carrier applications

Y. Yao, D. Xu, C. Liu, Y. Guan, J. Zhang, Y. Su, L. Zhao, F. Meng and J. Luo, RSC Adv., 2016, 6, 97684 DOI: 10.1039/C6RA20613A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements