Issue 99, 2016, Issue in Progress

Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries

Abstract

Compared to commercialized cathode materials, Li-rich layered oxide exhibits a superior mass energy density. However, owing to its low tap/press density, the advantage of its volume energy density is not as obvious as that of its mass energy density, which limits its applications in some volume-constrained fields. It has been shown that the morphology of the precursor is critical to the performances of the final product. Here, solvothermal and co-precipitation methods were adopted to synthesize transition metal carbonate balls with micro-size particles to obtain high-density Li-rich layered oxides. The solvothermal synthesized carbonate showed a micro–nano hierarchical structure composed of nanoplates as subunits, and the co-precipitated synthesized carbonate just presents a micrometer quasi-ball morphology. The Li1.2Mn0.54Ni0.13Co0.13O2 derived from the above solvothermal synthesized carbonate (ST-LMNCO) demonstrated an improved volume density of ∼14% compared to the one derived from the co-precipitated synthesized carbonate (CP-LMNCO). As for electrochemical performances, the ST-LMNCO exhibited a higher discharge specific capacitance (296.6 mA h g−1 for the first discharge), a better rate performance (201.6 mA h g−1 at 1C rate) and a better capacity retention capability (86.2% after 80 cycles) than the CP-LMNCO. The morphologies of the transition metal carbonates as starting materials significantly impacted the morphologies of the derived Li1.2Mn0.54Ni0.13Co0.13O2 particles. Therefore, the carbonate with a hierarchical micro–nanostructure obtained from the solvothermal method is a promising precursor for high performance Li1.2Mn0.54Ni0.13Co0.13O2.

Graphical abstract: Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries

Supplementary files

Article information

Article type
Communication
Submitted
21 Aug 2016
Accepted
27 Sep 2016
First published
27 Sep 2016

RSC Adv., 2016,6, 96714-96720

Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries

D. Dai, B. Wang, B. Li, F. Li, X. Wang, H. Tang and Z. Chang, RSC Adv., 2016, 6, 96714 DOI: 10.1039/C6RA21006F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements