Issue 109, 2016

Benzoxazines with enhanced thermal stability from phenolated organosolv lignin

Abstract

Lignin-based benzoxazines are synthesized for the first time using organosolv lignin as the phenolic component and aniline or propargyl amine as the amine component through the Mannich condensation reaction. Acid-catalyzed phenolation of organosolv lignin is performed to increase the phenolic structure with the open ortho-position, which is a requirement for an oxazine ring formation. Two model compounds using o-cresol and p-cresol as the phenolic component and propargylamine as the amine component are also synthesized for comparison. The successful syntheses are verified by Fourier transform infrared spectroscopy (FT-IR); proton, carbon and phosphorus nuclear magnetic resonance spectroscopy (1H, 13C and 31P NMR); and elemental analysis. Further structural characterization of the precursor resins is performed using heteronuclear single quantum coherence (HSQC) NMR technique. The polymerization process is followed by both differential scanning calorimetry (DSC) and in situ isothermal FT-IR technique. The polymerization of the lignin-based benzoxazines proceeds faster than ordinary benzoxazine monomers due to the catalytic effect of the residual phenolic moieties in the lignin units. The majority of polymerization process takes place in less than 15 min at 180 °C for both lignin-based benzoxazines studied. The thermal stability of the polymers under study is evaluated by thermogravimetric analysis (TGA). The char yields of the polybenzoxazines derived from the lignin-based benzoxazines are close to 50%, which lead to LOI values considered self-extinguishing.

Graphical abstract: Benzoxazines with enhanced thermal stability from phenolated organosolv lignin

Article information

Article type
Paper
Submitted
06 Sep 2016
Accepted
28 Oct 2016
First published
28 Oct 2016
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2016,6, 107689-107698

Benzoxazines with enhanced thermal stability from phenolated organosolv lignin

G. J. Abarro, J. Podschun, L. J. Diaz, S. Ohashi, B. Saake, R. Lehnen and H. Ishida, RSC Adv., 2016, 6, 107689 DOI: 10.1039/C6RA22334F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements