Issue 107, 2016, Issue in Progress

Preparation and adsorption capacity of porous MoS2 nanosheets

Abstract

Layered porous MoS2 with high adsorption capacity was synthesized directly using molybdenum trioxide and potassium rhodanate as Mo and S sources in a facile hydrothermal method without any surfactant and sacrificial template. The influences of varying the hydrothermal temperature on the morphology and adsorptive properties of MoS2 are discussed. As-prepared MoS2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectrophotometry (UV-Vis), room-temperature photoluminescence spectroscopy (RT-PL), thermogravimetric analysis (TGA) and Brunauer–Emmet–Teller (BET) measurements. MoS2 samples exhibited an optimal nanostructure, specific surface area and thermal stability when the hydrothermal temperature was 190 °C, and the layered porous structure is comprised of many thin nanosheets. In addition, the final adsorption capacities of the layered MoS2 toward RhB, MB and MO were studied. The sample exhibited ultrafast adsorption for dye removal and could reach 163.0 mg g−1, 499.0 mg g−1 and 125.1 mg g−1 at 420 min, respectively. The adsorption mechanism was also studied. The results indicate that layered MoS2 structures possess a significant adsorption ability, which may be useful for further research and practical applications of the layered MoS2 adsorbent in wastewater treatment.

Graphical abstract: Preparation and adsorption capacity of porous MoS2 nanosheets

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2016
Accepted
26 Oct 2016
First published
26 Oct 2016

RSC Adv., 2016,6, 105222-105230

Preparation and adsorption capacity of porous MoS2 nanosheets

H. Li, F. Xie, W. Li, B. D. Fahlman, M. Chen and W. Li, RSC Adv., 2016, 6, 105222 DOI: 10.1039/C6RA22414H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements