Piezo-resistive and thermo-resistance effects of highly-aligned CNT based macrostructures
Abstract
Recent advances in assembling Carbon NanoTubes (CNTs) into macrostructures with outstanding properties, such as high tensile strength, high conductivity and porosity, and strong corrosive resistance, have underpinned potentially novel applications. For example, in advanced electronics, bioengineering and nanomechanics. This paper focuses on the development of (i) the piezoresistive polydimethylsiloxane–CNT (PDMS–CNT) composite membrane, and (ii) the thermo-resistive CNT hotwire using a technique of producing highly aligned CNT yarns and films. Our experimental results show that while PDMS–CNT films possess an outperformed gauge factor (10.7) compared with ones of CNT films in recent publications and several metals, a clear linear relationship of the resistance versus the temperature for a hotwire using CNT yarn is observed. Hence, the work supplies valuable evidence in the use of CNT films and yarns in several potential applications as thermal sensing elements and anemometric hotwires, respectively.