Issue 112, 2016

Green synthesis of Ag nanoparticles in large quantity by cryomilling

Abstract

Most of the synthetic methods for the preparation of Ag nanoparticles (Ag NPs) involve wet chemical synthesis, in which hazardous chemicals are used and the NPs are further stabilized by a surfactant. The presence of a surfactant is detrimental to the purity as well as to the native properties of the Ag NPs. The present study reports a unique technique to prepare ultrapure free-standing Ag NPs in large quantities without the use of any hazardous chemicals. This has been achieved by cryomilling. Note that cryomilling is a cost effective method to prepare metal NPs, involving ball milling below 160 ± 10 °C under a protective Ar atmosphere. The experimental results reveal that it is possible to obtain Ag NPs with a narrow size distribution (4–8 nm). The level of contamination (34 ppb of W) in the nanoparticles was estimated by EPMA, whereas the ultra-high purity of the Ag NPs was confirmed by ICP-OES and XPS. The surfactant-free Ag NPs were also stable at elevated temperatures (400 °C) and exhibited free-standing nature in liquids including ethanol, methanol, and water. The results have been discussed based on the low-temperature deformation behaviour of Ag and the electrostatic stabilization of highly pure Ag NPs in different polar liquids.

Graphical abstract: Green synthesis of Ag nanoparticles in large quantity by cryomilling

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2016
Accepted
07 Nov 2016
First published
07 Nov 2016
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2016,6, 111380-111388

Green synthesis of Ag nanoparticles in large quantity by cryomilling

N. Kumar, K. Biswas and R. K. Gupta, RSC Adv., 2016, 6, 111380 DOI: 10.1039/C6RA23120A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements