Issue 12, 2016

Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation

Abstract

By adopting coarse-grained molecular dynamics simulation, we investigate the effects of end-functionalization and shear flow on the destruction and recovery of a nanorod conductive network in a functionalized polymer matrix. We find that the end-functionalization of polymeric chains can enhance the electrical conductivity of nanorod filled polymer nanocomposites, indicated by the decrease of the percolation threshold. However, there exists an optimal end-functionalization extent to reach the maximum electrical conductivity. In the case of steady shear flow, both homogeneous conductive probability and directional conductive probability perpendicular to the shear direction decrease with the shear rate, while the directional conductive probability parallel to the shear direction increases. Importantly, we develop a semi-empirical equation to describe the change of the homogeneous conductive probability as a function of the shear rate. Meanwhile, we obtain an empirical formula describing the relationship between the anisotropy of the conductive probability and the orientation of the nanorods. In addition, the conductivity stability increases with increasing nanorod volume fraction. During the recovery process of the nanorod conductive network, it can be fitted well by the model combining classical percolation theory and a time-dependent nanorod aggregation kinetic equation. The fitted recovery rate is similar for different nanorod volume fractions. In summary, this work provides some rational rules for fabricating polymer nanocomposites with excellent performance of electrical conductivity.

Graphical abstract: Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2015
Accepted
09 Feb 2016
First published
09 Feb 2016

Soft Matter, 2016,12, 3074-3083

Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation

Y. Gao, D. Cao, Y. Wu, J. Liu and L. Zhang, Soft Matter, 2016, 12, 3074 DOI: 10.1039/C5SM02803E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements