Issue 12, 2016

Foam drainage in the presence of solid particles

Abstract

We conducted forced drainage experiments to study the liquid flow within the foams stabilized by a cationic surfactant (CTAB) in the presence of partially hydrophobic silica particles. The results show that the presence of solid particles, even when present in small amounts (0.0932 g L−1 foam), can significantly decrease the foam permeability. The scaling behaviour (power law) between the drainage velocity and the imposed flow rate indicates that the presence of solid particles in the foams triggers a transition of the foam drainage regime from a node-dominated regime to a Plateau border-dominated regime. We applied two foam drainage equations for aqueous foams to simulate the experimental data and interpret the transition. The simulation results show that the presence of solid particles in the foams increases the rigidity of the interfaces and the viscous losses in the channels (the Plateau borders) of the foams, and decreases the foam permeability. We also generalize the theory for the effects of unattached hydrophilic particles on foam drainage by considering the effects of hydrophobicity and concentration of solid particles on the confinement of foam networks. This study explores liquid drainage in three-phase foams and is relevant to the field of hydrophobic particle separation by froth flotation, in which the wash water is commonly applied to the froth layer to improve the product grade.

Graphical abstract: Foam drainage in the presence of solid particles

Article information

Article type
Paper
Submitted
06 Jan 2016
Accepted
01 Feb 2016
First published
01 Feb 2016

Soft Matter, 2016,12, 3004-3012

Foam drainage in the presence of solid particles

J. Wang and A. V. Nguyen, Soft Matter, 2016, 12, 3004 DOI: 10.1039/C6SM00028B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements