Issue 13, 2016

Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics

Abstract

The surface instability of monolayer graphene supported by a soft (polymer) substrate under equal-biaxial compression has been explored through large scale coarse-grained molecular simulations. Regardless of the interfacial adhesion strength between the graphene and the substrate, herringbone wrinkles have always been observed due to their lowest energy status, compared with the checkerboard, hexagonal, triangular and one dimensional sinusoidal modes. Moreover, the graphene–polymer substrate interaction energy has a negligible effect on the critical strain for the onset of these wrinkles. Yet, if the graphene is bonded to a rigid (non-deformable) substrate, the critical strain increases with increasing graphene–substrate interfacial strength. The surface wrinkles of graphene are delayed and suppressed by the strong bonding of graphene to the rigid substrate. Besides, only localized folds and crumples have been observed on the surface of graphene, when graphene–substrate interaction energy is strong enough. All these observations signal that the deformability (stiffness) of the substrate plays an essential role in determining the morphology of supported graphene under compression. In addition, when a flat graphene is attached on a highly pre-strained (50%) polymer substrate, wrinkles will be formed on its surface during the relaxation of pre-strain within the polymer substrate. The wrinkled graphene could be stretched up to 50% without fracture, accompanied by the diminishing of surface wrinkles. Therefore, it opens a new avenue to enhance the stretchability of graphene materials, and enables the future applications of graphene and other 2D materials in stretchable and flexible electronics.

Graphical abstract: Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics

Supplementary files

Article information

Article type
Paper
Submitted
14 Jan 2016
Accepted
16 Feb 2016
First published
16 Feb 2016

Soft Matter, 2016,12, 3202-3213

Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics

Y. Li, Soft Matter, 2016, 12, 3202 DOI: 10.1039/C6SM00108D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements