Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal†
Abstract
We report the development of a highly stable nanomaterial based on ferromagnetic nanoparticles dispersed in a thermotropic liquid crystal. The long-term colloidal stability and homogeneity were achieved through surface modification of the nanoparticles with a mixture of a dendritic oligomesogenic surfactant and hexylphosphonic acid and confirmed by optical and electron microscopy. The nanomaterial has an increased sensitivity to the magnetic field possessing collective and non-collective magneto-optical responses in contrast to the undoped LC. The effective coupling of the spherical particles with the LC director is due to the arrangement of the nanoparticles in chains.