Issue 37, 2016

Segmental dynamics in lamellar phases of tapered copolymers

Abstract

Recent experiments have reported that the lamellar phase of salt-doped tapered copolymers exhibit higher ionic conductivity compared to those seen in similar morphologies of diblock copolymers. Such observations were in turn rationalized by invoking the corresponding glass transition temperature of the segregated copolymers. In this work we report the results of coarse-grained molecular dynamics simulations to identify the mechanisms underlying such characteristics. Explicitly, we probe the combined influences of the degree of segregation and the disparity in mobilities of the segments of the two blocks, upon the local relaxation dynamics of tapered copolymers segregated in lamellar phases. Our results show that the local dynamics of tapered copolymers depend on two independent factors, viz., the degree of segregation of such copolymers relative to their order–disorder transition temperature, and the relative mobilities (glass transition temperatures) of the two blocks. In qualitative correspondence with experiments, we find that for appropriate combinations of mobility ratios and degree of segregation, the lamellar phases of tapered copolymers can exhibit faster local segmental dynamics compared to diblock copolymers.

Graphical abstract: Segmental dynamics in lamellar phases of tapered copolymers

Article information

Article type
Paper
Submitted
01 Jul 2016
Accepted
19 Aug 2016
First published
30 Aug 2016

Soft Matter, 2016,12, 7818-7823

Segmental dynamics in lamellar phases of tapered copolymers

V. Sethuraman and V. Ganesan, Soft Matter, 2016, 12, 7818 DOI: 10.1039/C6SM01516F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements