Issue 16, 2016

Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm

Abstract

A tunable infrared reflector has been fabricated using polymer stabilized cholesteric liquid crystals containing a negative dielectric, anisotropic liquid crystal and a long and flexible ethylene glycol twin crosslinker. The reflection bandwidth of this prototype smart window can be tuned from 120 nm to an unprecedented 1100 nm in the infrared region upon application of only a small DC electric field, without interfering with the incident visible solar light. Bandwidth broadening was induced using very low operational power with acceptable switching speeds but only takes place in cells with particular gap thicknesses. Calculations reveal that between 8% and 45% of incident solar infrared light can be reflected with a single cell. The infrared reflector can potentially be used as a smart window to maintain the indoor temperature throughout the year, thereby reducing reliance on artificial lighting, heating and cooling, resulting in more than 12% reduction of building operation costs.

Graphical abstract: Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm

Supplementary files

Article information

Article type
Paper
Submitted
24 Feb 2016
Accepted
29 Mar 2016
First published
30 Mar 2016

J. Mater. Chem. A, 2016,4, 6064-6069

Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm

H. Khandelwal, M. G. Debije, T. J. White and A. P. H. J. Schenning, J. Mater. Chem. A, 2016, 4, 6064 DOI: 10.1039/C6TA01647B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements