Issue 22, 2016

In situ synthesis of flexible elastic N-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries

Abstract

A flexible elastic N-doped carbon foam (NCF) has been successfully synthesized in situ via direct carbonization/pyrolysis of polyurethane foam, which is a facile, cost-effective and environmentally friendly method. Due to its uniform three-dimensional connected structure, its reasonable composition with N doping and its high electronic conductivity, the NCF can function as both a three-dimensional current collector and a carbon interlayer for lithium sulfur batteries. As a typical model, cathodes consisting of NCF and CNT/S were prepared. The resulting batteries deliver a large reversible capacity of 1124 mA h g−1 at 0.5C and retain a high specific capacity of 902.8 mA h g−1 after 100 cycles, with a coulombic efficiency of 98.6% throughout the cycles. Furthermore, a discharge capacity of 691.8 mA h g−1 is still attainable when the rate is increased to 2.0C. The excellent cycling performance and rate capability are contributed to the uniform flexible elastic, conductive 3D framework and good porosity, and may have great significance for large-scale commercial applications of Li–S batteries.

Graphical abstract: In situ synthesis of flexible elastic N-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2016
Accepted
03 May 2016
First published
04 May 2016

J. Mater. Chem. A, 2016,4, 8636-8644

In situ synthesis of flexible elastic N-doped carbon foam as a carbon current collector and interlayer for high-performance lithium sulfur batteries

Z. Cao, J. Zhang, Y. Ding, Y. Li, M. Shi, H. Yue, Y. Qiao, Y. Yin and S. Yang, J. Mater. Chem. A, 2016, 4, 8636 DOI: 10.1039/C6TA01855F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements