Issue 43, 2016

Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes

Abstract

Polybenzoxazoles (PBOs), such as thermally rearranged (TR) polymers, have been shown to have excellent gas separation performance. Herein we report the preparation and transport properties of two new series of PBO-based polymers that were thermally derived from triptycene-containing o-hydroxy polyimide and polyamide precursors via a thermal rearrangement (TR) process and a thermal cyclodehydration (TC) process, respectively. Incorporation of triptycene units into poly(hydroxyimide) precursor structures led to a significant increase of fractional free volume and created ultrafine microporosity in the converted PBO-based TR polymers, which enabled both high gas permeabilities and high selectivities. Although the TC process of the poly(hydroxyamide) precursor led to moderate improvement in the separation performance of the resulting triptycene-containing PBO polymers as compared to the TR process, the PBO films converted via the TC process exhibited excellent mechanical properties superior to many other TR polymers previously reported in the literature as well as the triptycene-containing TR polymers in this study. In particular, the PBO film thermally rearranged at 450 °C showed a H2 pure gas permeability of 810 barrer, a CO2 permeability of 270 barrer, and CO2/CH4 and H2/CH4 selectivities of 67 and 200, respectively, at 35 °C and 11 atm, which are far beyond the upper bound limits.

Graphical abstract: Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2016
Accepted
30 Sep 2016
First published
03 Oct 2016

J. Mater. Chem. A, 2016,4, 17050-17062

Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes

S. Luo, J. Liu, H. Lin, B. A. Kazanowska, M. D. Hunckler, R. K. Roeder and R. Guo, J. Mater. Chem. A, 2016, 4, 17050 DOI: 10.1039/C6TA03951K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements