Issue 40, 2016

Biomimetic wiring and stabilization of photosynthetic membrane proteins with block copolymer interfaces

Abstract

Integrating photosynthetic membrane proteins with non-biological materials such as polymers and electrodes is attractive, as it could allow new ways of harvesting solar energy for direct electrical power, sensing, or chemical production. However, such integration is challenging, as these proteins have to be “wired” to electrodes and oriented to maximize light capture and electron transfer all while maintaining long-term activity. In this work we present a durable and unique solution to the challenges of stabilization and wiring of photosynthetic membrane proteins on electrodes. A block copolymer, poly(butadiene)12-poly(ethylene oxide)8 (PB12-PEO8), that mimics the bilayer assembly of lipids was used to stabilize photosystem I (PSI) in a near-native hydrophobic environment. At high protein concentrations, large, highly packed planar membranes (∼4 nm thick) were formed, which allowed high surface loading of protein at the electrode interface. To “wire” these membranes with metal electrodes, a conductive block copolymer bilayer based on the same PB12-PEO8 but with intercalated conjugated oligoelectrolytes (COEs) was used. This photo-active conductive layer was used to conduct electrons while maintaining a stabilizing cell membrane-like hydrated environment at the protein–metal interface. Photocurrents approaching 35.0 ± 3.5 μA cm−2 were generated upon illumination of these assembled devices with photosynthetically active radiation (PAR), among the highest reported so far for such systems on a per protein basis. This is the first application of membrane proteins completely stabilized in and on a block copolymer support for an energy-relevant electrochemical device and may represent the highest photocurrent generation per protein.

Graphical abstract: Biomimetic wiring and stabilization of photosynthetic membrane proteins with block copolymer interfaces

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2016
Accepted
13 Sep 2016
First published
16 Sep 2016

J. Mater. Chem. A, 2016,4, 15457-15463

Biomimetic wiring and stabilization of photosynthetic membrane proteins with block copolymer interfaces

P. O. Saboe, E. Conte, S. Chan, H. Feroz, B. Ferlez, M. Farell, M. F. Poyton, I. T. Sines, H. Yan, G. C. Bazan, J. Golbeck and M. Kumar, J. Mater. Chem. A, 2016, 4, 15457 DOI: 10.1039/C6TA07148A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements