Issue 2, 2016

Fabrication of keratin/fibroin membranes by electrospinning for vascular tissue engineering

Abstract

Cardiovascular diseases (CVDs) are some of the leading causes of death and bypass surgery is one of the common treatment options for the critical CVD patients. There is no ideal material available for arterial bypass surgery. Herein, a fibroin and keratin porous membrane was prepared by electro-spinning and proposed for tissue-engineered vascular grafts (TEVGs). The purified fibroin (F) and keratin (K) were mixed in different weight ratios of 9 : 1 (FK91), 8 : 2 (FK82), and 7 : 3 (FK73) to obtain a membrane. The SEM images revealed that the electro-spinned membranes have a fibrous interconnected porous structure. The average diameter of the membrane F, FK91, FK82 and FK73 was 5.74 ± 1.04, 4.20 ± 1.19, 2.94 ± 0.81 and 2.27 ± 0.65 μm, respectively. The ultimate tensile strength (UTS) of F, FK91, FK82 and FK73 was 2.09 ± 0.06, 2.02 ± 0.06, 1.81 ± 0.10 and 1.74 ± 0.12 MPa, respectively. The contact angle of F, FK91, FK82 and FK73 was 72.55 ± 0.55°, 66.39 ± 0.90°, 43.47 ± 0.04° and 33.65 ± 2.83°, respectively. The wettability results were in agreement with those of the cell adhesion to the electro-spinning membranes. The attached HUVECs on the developed membranes showed no cytotoxicity. The immunocytochemistry staining and qPCR analysis showed that the phenotype of the keratin-fibroin membrane was not altered. The results of the ultimate tensile strength, cell adhesion and microstructure revealed that FK82 is similar to native vessels and could be considered as a potential material for TEVGs.

Graphical abstract: Fabrication of keratin/fibroin membranes by electrospinning for vascular tissue engineering

Supplementary files

Article information

Article type
Paper
Submitted
15 Sep 2015
Accepted
11 Nov 2015
First published
08 Dec 2015

J. Mater. Chem. B, 2016,4, 237-244

Fabrication of keratin/fibroin membranes by electrospinning for vascular tissue engineering

K. Yen, C. Chen, J. Huang, W. Kuo and F. Lin, J. Mater. Chem. B, 2016, 4, 237 DOI: 10.1039/C5TB01921D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements